Топ-100 ⓘ Rail transport or train transport is a means of transferring

ⓘ Rail transport or train transport is a means of transferring passengers and goods on wheeled vehicles running on rails, which are located on tracks. In contrast ..

Free and no ads
no need to download or install

Pino - logical board game which is based on tactics and strategy. In general this is a remix of chess, checkers and corners. The game develops imagination, concentration, teaches how to solve tasks, plan their own actions and of course to think logically. It does not matter how much pieces you have, the main thing is how they are placement!

online intellectual game →

Rail transport in Turkey

Turkey has a well-developed, state-owned railway system built to standard gauge) which falls under the remit of the Ministry of Transport and Communication. The primary rail carrier is the Turkiye Cumhuriyeti Devlet Demiryolları which is responsible for all long-distance and cross-border freight and passenger trains. A number of other companies operate suburban passenger trains in urban conurbations. Native railway industry extends to the production of locomotives, passenger vehicles and freight wagons; some vehicles are also produced through licensing agreements and cooperation with forei ...


History of rail transport

The history of rail transport began in 6th century BC in Ancient Greece. It can be divided up into several discrete periods defined by the principal means of track material and motive power used.


Rapid transit

Rapid transit or mass rapid transit, also known as heavy rail, metro, subway, tube, U-Bahn or underground, is a type of high-capacity public transport generally found in urban areas. Unlike buses or trams, rapid transit systems are electric railways that operate on an exclusive right-of-way, which cannot be accessed by pedestrians or other vehicles of any sort, and which is often grade separated in tunnels or on elevated railways. Modern service on rapid transit systems are provided on designated lines between stations typically using electric multiple units on rail tracks, although some s ...



A tram is a rail vehicle that runs on tramway tracks along public urban streets, some include segments of segregated right-of-way. The lines or networks operated by tramcars are called tramways. Historically the term electric street railways was also used in the United States. In the United States, the term tram has sometimes been used for rubber-tired trackless trains, which are unrelated to other kinds of trams. Tram vehicles are usually lighter and shorter than main line and rapid transit trains. Today, most trams use electrical power, usually fed by a pantograph sliding on an overhead ...


Rail transport in Russia

Rail transport in Russia runs on one of the biggest railway networks in the world. Russian railways are the third longest by length and third by volume of freight hauled, after the railways of the United States and China. In overall density of operations /length of track, Russia is second only to China. Rail transport in Russia has been described as one of the economic wonders of the 19th, 20th, and 21st centuries. JSC Russian Railways has a near-monopoly on long-distance train travel in Russia, with a 90% market share. Independent long-distance carriers include Grand Service Express TC, T ...


Rail transport in Australia

Rail transport in Australia is a crucial aspect of the Australian transport network. Rail in Australia is to a large extent state-based. As at 2018, the Australian rail network consisted of a total of 36.064 kilometres of track on three major track gauges. Except for a small number of private railways, most of the Australian railway network infrastructure is government-owned, either at the federal or state level. Most railway operators were once state government agencies, but with privatisation in the 1990s, private companies now operate the majority of trains in Australia. The Australian ...

Rail transport

ⓘ Rail transport

Rail transport or train transport is a means of transferring passengers and goods on wheeled vehicles running on rails, which are located on tracks. In contrast to road transport, where vehicles run on a prepared flat surface, rail vehicles are directionally guided by the tracks on which they run. Tracks usually consist of steel rails, installed on ties set in ballast, on which the rolling stock, usually fitted with metal wheels, moves. Other variations are also possible, such as slab track. This is where the rails are fastened to a concrete foundation resting on a prepared subsurface.

Rolling stock in a rail transport system generally encounters lower frictional resistance than rubber-tired road vehicles, so passenger and freight cars carriages and wagons can be coupled into longer trains. The operation is carried out by a railway company, providing transport between train stations or freight customer facilities. Power is provided by locomotives which either draw electric power from a railway electrification system or produce their own power, usually by diesel engines or, historically, steam engines. Most tracks are accompanied by a signalling system. Railways are a safe land transport system when compared to other forms of transport. Railway transport is capable of high levels of passenger and cargo utilization and energy efficiency, but is often less flexible and more capital-intensive than road transport, when lower traffic levels are considered.

The oldest known, man/animal-hauled railways date back to the 6th century BC in Corinth, Greece. Rail transport then commenced in mid 16th century in Germany in the form of horse-powered funiculars and wagonways. Modern rail transport commenced with the British development of the steam locomotives in the early 19th century. Thus the railway system in Great Britain is the oldest in the world. Built by George Stephenson and his son Roberts company Robert Stephenson and Company, the Locomotion No. 1 is the first steam locomotive to carry passengers on a public rail line, the Stockton and Darlington Railway in 1825. George Stephenson also built the first public inter-city railway line in the world to use only the steam locomotives all the time, the Liverpool and Manchester Railway which opened in 1830. With steam engines, one could construct mainline railways, which were a key component of the Industrial Revolution. Also, railways reduced the costs of shipping, and allowed for fewer lost goods, compared with water transport, which faced occasional sinking of ships. The change from canals to railways allowed for "national markets" in which prices varied very little from city to city. The spread of the railway network and the use of railway timetables, led to the standardisation of time railway time in Britain based on Greenwich Mean Time. Prior to this, major towns and cities varied their local time relative to GMT. The invention and development of the railway in the United Kingdom was one of the most important technological inventions of the 19th century. The worlds first underground railway, the Metropolitan Railway part of the London Underground, opened in 1863.

In the 1880s, electrified trains were introduced, leading to electrification of tramways and rapid transit systems. Starting during the 1940s, the non-electrified railways in most countries had their steam locomotives replaced by diesel-electric locomotives, with the process being almost complete by the 2000s. During the 1960s, electrified high-speed railway systems were introduced in Japan and later in some other countries. Many countries are in the process of replacing diesel locomotives with electric locomotives, mainly due to environmental concerns, a notable example being Switzerland, which has completely electrified its network. Other forms of guided ground transport outside the traditional railway definitions, such as monorail or maglev, have been tried but have seen limited use.

Following a decline after World War II due to competition from cars and airplanes, rail transport has had a revival in recent decades due to road congestion and rising fuel prices, as well as governments investing in rail as a means of reducing CO 2 emissions in the context of concerns about global warming.


1. History

The history of rail transport began in the 6th century BC in Ancient Greece. It can be divided up into several discrete periods defined by the principal means of track material and motive power used.


1.1. History Ancient systems

Evidence indicates that there was 6 to 8.5 km long Diolkos paved trackway, which transported boats across the Isthmus of Corinth in Greece from around 600 BC. Wheeled vehicles pulled by men and animals ran in grooves in limestone, which provided the track element, preventing the wagons from leaving the intended route. The Diolkos was in use for over 650 years, until at least the 1st century AD. Paved trackways were also later built in Roman Egypt.


1.2. History Wooden rails introduced

In 1515, Cardinal Matthaus Lang wrote a description of the Reisszug, a funicular railway at the Hohensalzburg Fortress in Austria. The line originally used wooden rails and a hemp haulage rope and was operated by human or animal power, through a treadwheel. The line still exists and is operational, although in updated form and is possibly the oldest operational railway.

Wagonways or tramways using wooden rails, hauled by horses, started appearing in the 1550s to facilitate the transport of ore tubs to and from mines, and soon became popular in Europe. Such an operation was illustrated in Germany in 1556 by Georgius Agricola in his work De re metallica. This line used "Hund" carts with unflanged wheels running on wooden planks and a vertical pin on the truck fitting into the gap between the planks to keep it going the right way. The miners called the wagons Hunde "dogs" from the noise they made on the tracks.

There are many references to their use in central Europe in the 16th century. Such a transport system was later used by German miners at Caldbeck, Cumbria, England, perhaps from the 1560s. A wagonway was built at Prescot, near Liverpool, sometime around 1600, possibly as early as 1594. Owned by Philip Layton, the line carried coal from a pit near Prescot Hall to a terminus about half a mile away. A funicular railway was also made at Broseley in Shropshire some time before 1604. This carried coal for James Clifford from his mines down to the river Severn to be loaded onto barges and carried to riverside towns. The Wollaton Wagonway, completed in 1604 by Huntingdon Beaumont, has sometimes erroneously been cited as the earliest British railway. It ran from Strelley to Wollaton near Nottingham.

The Middleton Railway in Leeds, which was built in 1758, later became the worlds oldest operational railway other than funiculars, albeit now in an upgraded form. In 1764, the first railway in the Americas was built in Lewiston, New York.


1.3. History Metal rails introduced

In the late 1760s, the Coalbrookdale Company began to fix plates of cast iron to the upper surface of the wooden rails. This allowed a variation of gauge to be used. At first only balloon loops could be used for turning, but later, movable points were taken into use that allowed for switching.

A system was introduced in which unflanged wheels ran on L-shaped metal plates – these became known as plateways. John Curr, a Sheffield colliery manager, invented this flanged rail in 1787, though the exact date of this is disputed. The plate rail was taken up by Benjamin Outram for wagonways serving his canals, manufacturing them at his Butterley ironworks. In 1803, William Jessop opened the Surrey Iron Railway, a double track plateway, erroneously sometimes cited as worlds first public railway, in south London.

Meanwhile, William Jessop had earlier used a form of all-iron edge rail and flanged wheels successfully for an extension to the Charnwood Forest Canal at Nanpantan, Loughborough, Leicestershire in 1789. In 1790, Jessop and his partner Outram began to manufacture edge-rails. Jessop became a partner in the Butterley Company in 1790. The first public edgeway thus also first public railway built was Lake Lock Rail Road in 1796. Although the primary purpose of the line was to carry coal, it also carried passengers.

These two systems of constructing iron railways, the "L" plate-rail and the smooth edge-rail, continued to exist side by side until well into the early 19th century. The flanged wheel and edge-rail eventually proved its superiority and became the standard for railways.

Cast iron used in rails proved unsatisfactory because it was brittle and broke under heavy loads. The wrought iron invented by John Birkinshaw in 1820 replaced cast iron. Wrought iron usually simply referred to as "iron" was a ductile material that could undergo considerable deformation before breaking, making it more suitable for iron rails. But iron was expensive to produce until Henry Cort patented the puddling process in 1784. In 1783 Cort also patented the rolling process, which was 15 times faster at consolidating and shaping iron than hammering. These processes greatly lowered the cost of producing iron and rails. The next important development in iron production was hot blast developed by James Beaumont Neilson patented 1828, which considerably reduced the amount of coke fuel or charcoal needed to produce pig iron. Wrought iron was a soft material that contained slag or dross. The softness and dross tended to make iron rails distort and delaminate and they lasted less than 10 years. Sometimes they lasted as little as one year under high traffic. All these developments in the production of iron eventually led to replacement of composite wood/iron rails with superior all iron rails.

The introduction of the Bessemer process, enabling steel to be made inexpensively, led to the era of great expansion of railways that began in the late 1860s. Steel rails lasted several times longer than iron. Steel rails made heavier locomotives possible, allowing for longer trains and improving the productivity of railroads. The Bessemer process introduced nitrogen into the steel, which caused the steel to become brittle with age. The open hearth furnace began to replace the Bessemer process near the end of the 19th century, improving the quality of steel and further reducing costs. Thus steel completely replaced the use of iron in rails, becoming standard for all railways.

The first passenger horsecar or tram, Swansea and Mumbles Railway was opened between Swansea and Mumbles in Wales in 1807. Horses remained the preferable mode for tram transport even after the arrival of steam engines until the end of the 19th century, because they were cleaner compared to steam driven trams which caused smoke in city streets.


1.4. History Steam power introduced

In 1784 James Watt, a Scottish inventor and mechanical engineer, patented a design for a steam locomotive. Watt had improved the steam engine of Thomas Newcomen, hitherto used to pump water out of mines, and developed a reciprocating engine in 1769 capable of powering a wheel. This was a large stationary engine, powering cotton mills and a variety of machinery; the state of boiler technology necessitated the use of low pressure steam acting upon a vacuum in the cylinder, which required a separate condenser and an air pump. Nevertheless, as the construction of boilers improved, Watt investigated the use of high-pressure steam acting directly upon a piston, raising the possibility of a smaller engine that might be used to power a vehicle. Following his patent, Watts employee William Murdoch produced a working model of a self-propelled steam carriage in that year.

The first full-scale working railway steam locomotive was built in the United Kingdom in 1804 by Richard Trevithick, a British engineer born in Cornwall. This used high-pressure steam to drive the engine by one power stroke. The transmission system employed a large flywheel to even out the action of the piston rod. On 21 February 1804, the worlds first steam-powered railway journey took place when Trevithicks unnamed steam locomotive hauled a train along the tramway of the Penydarren ironworks, near Merthyr Tydfil in South Wales. Trevithick later demonstrated a locomotive operating upon a piece of circular rail track in Bloomsbury, London, the Catch Me Who Can, but never got beyond the experimental stage with railway locomotives, not least because his engines were too heavy for the cast-iron plateway track then in use.

The first commercially successful steam locomotive was Matthew Murrays rack locomotive Salamanca built for the Middleton Railway in Leeds in 1812. This twin-cylinder locomotive was light enough to not break the edge-rails track and solved the problem of adhesion by a cog-wheel using teeth cast on the side of one of the rails. Thus it was also the first rack railway.

This was followed in 1813 by the locomotive Puffing Billy built by Christopher Blackett and William Hedley for the Wylam Colliery Railway, the first successful locomotive running by adhesion only. This was accomplished by the distribution of weight between a number of wheels. Puffing Billy is now on display in the Science Museum in London, making it the oldest locomotive in existence.

In 1814 George Stephenson, inspired by the early locomotives of Trevithick, Murray and Hedley, persuaded the manager of the Killingworth colliery where he worked to allow him to build a steam-powered machine. Stephenson played a pivotal role in the development and widespread adoption of the steam locomotive. His designs considerably improved on the work of the earlier pioneers. He built the locomotive Blucher, also a successful flanged-wheel adhesion locomotive. In 1825 he built the locomotive Locomotion for the Stockton and Darlington Railway in the north east of England, which became the first public steam railway in the world in 1825, although it used both horse power and steam power on different runs. In 1829, he built the locomotive Rocket, which entered in and won the Rainhill Trials. This success led to Stephenson establishing his company as the pre-eminent builder of steam locomotives for railways in Great Britain and Ireland, the United States, and much of Europe. The first public railway which used only steam locomotives, all the time, was Liverpool and Manchester Railway, built in 1830.

Steam power continued to be the dominant power system in railways around the world for more than a century.


1.5. History Electric power introduced

The first known electric locomotive was built in 1837 by chemist Robert Davidson of Aberdeen in Scotland, and it was powered by galvanic cells batteries. Thus it was also the earliest battery electric locomotive. Davidson later built a larger locomotive named Galvani, exhibited at the Royal Scottish Society of Arts Exhibition in 1841. The seven-ton vehicle had two direct-drive reluctance motors, with fixed electromagnets acting on iron bars attached to a wooden cylinder on each axle, and simple commutators. It hauled a load of six tons at four miles per hour 6 kilometers per hour for a distance of one and a half miles 2.4 kilometres. It was tested on the Edinburgh and Glasgow Railway in September of the following year, but the limited power from batteries prevented its general use. It was destroyed by railway workers, who saw it as a threat to their job security.

Werner von Siemens demonstrated an electric railway in 1879 in Berlin. The worlds first electric tram line, Gross-Lichterfelde Tramway, opened in Lichterfelde near Berlin, Germany, in 1881. It was built by Siemens. The tram ran on 180 Volt DC, which was supplied by running rails. In 1891 the track was equipped with an overhead wire and the line was extended to Berlin-Lichterfelde West station. The Volks Electric Railway opened in 1883 in Brighton, England. The railway is still operational, thus making it the oldest operational electric railway in the world. Also in 1883, Modling and Hinterbruhl Tram opened near Vienna in Austria. It was the first tram line in the world in regular service powered from an overhead line. Five years later, in the U.S. electric trolleys were pioneered in 1888 on the Richmond Union Passenger Railway, using equipment designed by Frank J. Sprague.

The first use of electrification on a main line was on a four-mile section of the Baltimore Belt Line of the Baltimore and Ohio Railroad B&O in 1895 connecting the main portion of the B&to the new line to New York through a series of tunnels around the edges of Baltimores downtown. Electricity quickly became the power supply of choice for subways, abetted by the Spragues invention of multiple-unit train control in 1897. By the early 1900s most street railways were electrified.

The London Underground, the worlds oldest underground railway, opened in 1863, and it began operating electric services using a fourth rail system in 1890 on the City and South London Railway, now part of the London Underground Northern line. This was the first major railway to use electric traction. The worlds first deep-level electric railway, it runs from the City of London, under the River Thames, to Stockwell in south London.

The first practical AC electric locomotive was designed by Charles Brown, then working for Oerlikon, Zurich. In 1891, Brown had demonstrated long-distance power transmission, using three-phase AC, between a hydro-electric plant at Lauffen am Neckar and Frankfurt am Main West, a distance of 280 km. Using experience he had gained while working for Jean Heilmann on steam-electric locomotive designs, Brown observed that three-phase motors had a higher power-to-weight ratio than DC motors and, because of the absence of a commutator, were simpler to manufacture and maintain. However, they were much larger than the DC motors of the time and could not be mounted in underfloor bogies: they could only be carried within locomotive bodies.

In 1894, Hungarian engineer Kalman Kando developed a new type 3-phase asynchronous electric drive motors and generators for electric locomotives. Kandos early 1894 designs were first applied in a short three-phase AC tramway in Evian-les-Bains France, which was constructed between 1896 and 1898.

In 1896, Oerlikon installed the first commercial example of the system on the Lugano Tramway. Each 30-tonne locomotive had two 110 kW 150 hp motors run by three-phase 750 V 40 Hz fed from double overhead lines. Three-phase motors run at constant speed and provide regenerative braking, and are well suited to steeply graded routes, and the first main-line three-phase locomotives were supplied by Brown by then in partnership with Walter Boveri in 1899 on the 40 km Burgdorf–Thun line, Switzerland.

Italian railways were the first in the world to introduce electric traction for the entire length of a main line rather than a short section. The 106 km Valtellina line was opened on 4 September 1902, designed by Kando and a team from the Ganz works. The electrical system was three-phase at 3 kV 15 Hz. In 1918, Kando invented and developed the rotary phase converter, enabling electric locomotives to use three-phase motors whilst supplied via a single overhead wire, carrying the simple industrial frequency 50 Hz single phase AC of the high voltage national networks.

An important contribution to the wider adoption of AC traction came from SNCF of France after World War II. The company conducted trials at AC 50 Hz, and established it as a standard. Following SNCFs successful trials, 50 Hz, now also called industrial frequency was adopted as standard for main-lines across the world.


1.6. History Diesel power introduced

Earliest recorded examples of an internal combustion engine for railway use included a prototype designed by William Dent Priestman, which was examined by Sir William Thomson in 1888 who described it as a mounted upon a truck which is worked on a temporary line of rails to show the adaptation of a petroleum engine for locomotive purposes.". In 1894, a 20 hp 15 kW two axle machine built by Priestman Brothers was used on the Hull Docks.

In 1906, Rudolf Diesel, Adolf Klose and the steam and diesel engine manufacturer Gebruder Sulzer founded Diesel-Sulzer-Klose GmbH to manufacture diesel-powered locomotives. Sulzer had been manufacturing diesel engines since 1898. The Prussian State Railways ordered a diesel locomotive from the company in 1909. The worlds first diesel-powered locomotive was operated in the summer of 1912 on the Winterthur–Romanshorn railway in Switzerland, but was not a commercial success. The locomotive weight was 95 tonnes and the power was 883 kW with a maximum speed of 100 km/h. Small numbers of prototype diesel locomotives were produced in a number of countries through the mid-1920s.

A significant breakthrough occurred in 1914, when Hermann Lemp, a General Electric electrical engineer, developed and patented a reliable direct current electrical control system subsequent improvements were also patented by Lemp. Lemps design used a single lever to control both engine and generator in a coordinated fashion, and was the prototype for all diesel–electric locomotive control systems. In 1914, worlds first functional diesel–electric railcars were produced for the Koniglich-Sachsische Staatseisenbahnen Royal Saxon State Railways by Waggonfabrik Rastatt with electric equipment from Brown, Boveri & Cie and diesel engines from Swiss Sulzer AG. They were classified as DET 1 and DET 2 de.wiki. The first regular use of diesel–electric locomotives was in switching shunter applications. General Electric produced several small switching locomotives in the 1930s the famous "44-tonner" switcher was introduced in 1940 Westinghouse Electric and Baldwin collaborated to build switching locomotives starting in 1929.

In 1929, the Canadian National Railways became the first North American railway to use diesels in mainline service with two units, 9000 and 9001, from Westinghouse.


1.7. History High-speed rail

Although steam and diesel services reaching speeds up to 200 km/h were started before the 1960s in Europe, they were not very successful.

The first electrified high-speed rail Tōkaidō Shinkansen was introduced in 1964 between Tokyo and Osaka in Japan. Since then high-speed rail transport, functioning at speeds up to and above 300 km/h, has been built in Japan, Spain, France, Germany, Italy, the Peoples Republic of China, Taiwan Republic of China, the United Kingdom, South Korea, Scandinavia, Belgium and the Netherlands. The construction of many of these lines has resulted in the dramatic decline of short haul flights and automotive traffic between connected cities, such as the London–Paris–Brussels corridor, Madrid–Barcelona, Milan–Rome–Naples, as well as many other major lines.

High-speed trains normally operate on standard gauge tracks of continuously welded rail on grade-separated right-of-way that incorporates a large turning radius in its design. While high-speed rail is most often designed for passenger travel, some high-speed systems also offer freight service.


2. Trains

A train is a connected series of rail vehicles that move along the track. Propulsion for the train is provided by a separate locomotive or from individual motors in self-propelled multiple units. Most trains carry a revenue load, although non-revenue cars exist for the railways own use, such as for maintenance-of-way purposes. The engine driver engineer in North America controls the locomotive or other power cars, although people movers and some rapid transits are under automatic control.


2.1. Trains Haulage

Traditionally, trains are pulled using a locomotive. This involves one or more powered vehicles being located at the front of the train, providing sufficient tractive force to haul the weight of the full train. This arrangement remains dominant for freight trains and is often used for passenger trains. A push–pull train has the end passenger car equipped with a drivers cab so that the engine driver can remotely control the locomotive. This allows one of the locomotive-hauled trains drawbacks to be removed, since the locomotive need not be moved to the front of the train each time the train changes direction. A railroad car is a vehicle used for the haulage of either passengers or freight.

A multiple unit has powered wheels throughout the whole train. These are used for rapid transit and tram systems, as well as many both short- and long-haul passenger trains. A railcar is a single, self-powered car, and may be electrically-propelled or powered by a diesel engine. Multiple units have a drivers cab at each end of the unit, and were developed following the ability to build electric motors and engines small enough to fit under the coach. There are only a few freight multiple units, most of which are high-speed post trains.


2.2. Trains Motive power

Steam locomotives are locomotives with a steam engine that provides adhesion. Coal, petroleum, or wood is burned in a firebox, boiling water in the boiler to create pressurized steam. The steam travels through the smokebox before leaving via the chimney or smoke stack. In the process, it powers a piston that transmits power directly through a connecting rod US: main rod and a crankpin US: wristpin on the driving wheel US main driver or to a crank on a driving axle. Steam locomotives have been phased out in most parts of the world for economical and safety reasons, although many are preserved in working order by heritage railways.

Electric locomotives draw power from a stationary source via an overhead wire or third rail. Some also or instead use a battery. In locomotives that are powered by high voltage alternating current, a transformer in the locomotive converts the high voltage, low current power to low voltage, high current used in the traction motors that power the wheels. Modern locomotives may use three-phase AC induction motors or direct current motors. Under certain conditions, electric locomotives are the most powerful traction. They are also the cheapest to run and provide less noise and no local air pollution. However, they require high capital investments both for the overhead lines and the supporting infrastructure, as well as the generating station that is needed to produce electricity. Accordingly, electric traction is used on urban systems, lines with high traffic and for high-speed rail.

Diesel locomotives use a diesel engine as the prime mover. The energy transmission may be either diesel-electric, diesel-mechanical or diesel-hydraulic but diesel-electric is dominant. Electro-diesel locomotives are built to run as diesel-electric on unelectrified sections and as electric locomotives on electrified sections.

Alternative methods of motive power include magnetic levitation, horse-drawn, cable, gravity, pneumatics and gas turbine.


2.3. Trains Passenger trains

A passenger train travels between stations where passengers may embark and disembark. The oversight of the train is the duty of a guard/train manager/conductor. Passenger trains are part of public transport and often make up the stem of the service, with buses feeding to stations. Passenger trains provide long-distance intercity travel, daily commuter trips, or local urban transit services. They even include a diversity of vehicles, operating speeds, right-of-way requirements, and service frequency. Passenger trains usually can be divided into two operations: intercity railway and intracity transit. Whereas intercity railway involve higher speeds, longer routes, and lower frequency usually scheduled, intracity transit involves lower speeds, shorter routes, and higher frequency especially during peak hours.

Intercity trains are long-haul trains that operate with few stops between cities. Trains typically have amenities such as a dining car. Some lines also provide over-night services with sleeping cars. Some long-haul trains have been given a specific name. Regional trains are medium distance trains that connect cities with outlying, surrounding areas, or provide a regional service, making more stops and having lower speeds. Commuter trains serve suburbs of urban areas, providing a daily commuting service. Airport rail links provide quick access from city centres to airports.

High-speed rail are special inter-city trains that operate at much higher speeds than conventional railways, the limit being regarded at 200 to 320 kilometres per hour 120 to 200 mph. High-speed trains are used mostly for long-haul service and most systems are in Western Europe and East Asia. The speed record is 574.8 km/h 357.2 mph, set by a modified French TGV. Magnetic levitation trains such as the Shanghai airport train use under-riding magnets which attract themselves upward towards the underside of a guideway and this line has achieved somewhat higher peak speeds in day-to-day operation than conventional high-speed railways, although only over short distances. Due to their heightened speeds, route alignments for high-speed rail tend to have shallower grades and broader curves than conventional railways.

Their high kinetic energy translates to higher horsepower-to-ton ratios e.g. 20 horsepower per short ton or 16 kilowatts per tonne; this allows trains to accelerate and maintain higher speeds and negotiate steep grades as momentum builds up and recovered in downgrades. Since lateral forces act on curves, curvatures are designed with the highest possible radius. All these features are dramatically different from freight operations, thus justifying exclusive high-speed rail lines if it is economically feasible.

Higher-speed rail services are intercity rail services that have top speeds higher than conventional intercity trains but the speeds are not as high as those in the high-speed rail services. These services are provided after improvements to the conventional rail infrastructure in order to support trains that can operate safely at higher speeds.

Rapid transit is an intracity system built in large cities and has the highest capacity of any passenger transport system. It is usually grade-separated and commonly built underground or elevated. At street level, smaller trams can be used. Light rails are upgraded trams that have step-free access, their own right-of-way and sometimes sections underground. Monorail systems are elevated, medium-capacity systems. A people mover is a driverless, grade-separated train that serves only a few stations, as a shuttle. Due to the lack of uniformity of rapid transit systems, route alignment varies, with diverse rights-of-way and geometric characteristics sharp or broad curves, steep or gentle grades. For instance, the Chicago L trains are designed with extremely short cars to negotiate the sharp curves in the Loop. New Jerseys PATH has similar-sized cars to accommodate curves in the trans-Hudson tunnels. San Franciscos BART operates large cars on its routes.


2.4. Trains Freight train

A freight train hauls cargo using freight cars specialized for the type of goods. Freight trains are very efficient, with economy of scale and high energy efficiency. However, their use can be reduced by lack of flexibility, if there is need of transshipment at both ends of the trip due to lack of tracks to the points of pick-up and delivery. Authorities often encourage the use of cargo rail transport due to its fame.

Container trains have become the beta type in the US for bulk haulage. Containers can easily be transshipped to other modes, such as ships and trucks, using cranes. This has succeeded the boxcar wagon-load, where the cargo had to be loaded and unloaded into the train manually. The intermodal containerization of cargo has revolutionized the supply chain logistics industry, reducing ship costs significantly. In Europe, the sliding wall wagon has largely superseded the ordinary covered wagons. Other types of cars include refrigerator cars, stock cars for livestock and autoracks for road vehicles. When rail is combined with road transport, a roadrailer will allow trailers to be driven onto the train, allowing for easy transition between road and rail.

Bulk handling represents a key advantage for rail transport. Low or even zero transshipment costs combined with energy efficiency and low inventory costs allow trains to handle bulk much cheaper than by road. Typical bulk cargo includes coal, ore, grains and liquids. Bulk is transported in open-topped cars, hopper cars and tank cars.


3.1. Infrastructure Right of way

Railway tracks are laid upon land owned or leased by the railway company. Owing to the desirability of maintaining modest grades, rails will often be laid in circuitous routes in hilly or mountainous terrain. Route length and grade requirements can be reduced by the use of alternating cuttings, bridges and tunnels – all of which can greatly increase the capital expenditures required to develop a right of way, while significantly reducing operating costs and allowing higher speeds on longer radius curves. In densely urbanized areas, railways are sometimes laid in tunnels to minimize the effects on existing properties.


3.2. Infrastructure Track

Track consists of two parallel steel rails, anchored perpendicular to members called ties sleepers of timber, concrete, steel, or plastic to maintain a consistent distance apart, or rail gauge. Rail gauges are usually categorized as standard gauge used on approximately 55% of the worlds existing railway lines, broad gauge, and narrow gauge. In addition to the rail gauge, the tracks will be laid to conform with a Loading gauge which defines the maximum height and width for railway vehicles and their loads to ensure safe passage through bridges, tunnels and other structures.

The track guides the conical, flanged wheels, keeping the cars on the track without active steering and therefore allowing trains to be much longer than road vehicles. The rails and ties are usually placed on a foundation made of compressed earth on top of which is placed a bed of ballast to distribute the load from the ties and to prevent the track from buckling as the ground settles over time under the weight of the vehicles passing above.

The ballast also serves as a means of drainage. Some more modern track in special areas is attached by direct fixation without ballast. Track may be prefabricated or assembled in place. By welding rails together to form lengths of continuous welded rail, additional wear and tear on rolling stock caused by the small surface gap at the joints between rails can be counteracted; this also makes for a quieter ride.

On curves the outer rail may be at a higher level than the inner rail. This is called superelevation or cant. This reduces the forces tending to displace the track and makes for a more comfortable ride for standing livestock and standing or seated passengers. A given amount of superelevation is most effective over a limited range of speeds.

Turnouts, also known as points and switches, are the means of directing a train onto a diverging section of track. Laid similar to normal track, a point typically consists of a frog common crossing, check rails and two switch rails. The switch rails may be moved left or right, under the control of the signalling system, to determine which path the train will follow.

Spikes in wooden ties can loosen over time, but split and rotten ties may be individually replaced with new wooden ties or concrete substitutes. Concrete ties can also develop cracks or splits, and can also be replaced individually. Should the rails settle due to soil subsidence, they can be lifted by specialized machinery and additional ballast tamped under the ties to level the rails.

Periodically, ballast must be removed and replaced with clean ballast to ensure adequate drainage. Culverts and other passages for water must be kept clear lest water is impounded by the trackbed, causing landslips. Where trackbeds are placed along rivers, additional protection is usually placed to prevent streambank erosion during times of high water. Bridges require inspection and maintenance, since they are subject to large surges of stress in a short period of time when a heavy train crosses.


3.3. Infrastructure Train inspection systems

The inspection of railway equipment is essential for the safe movement of trains. Many types of defect detectors are in use on the worlds railroads. These devices utilize technologies that vary from a simplistic paddle and switch to infrared and laser scanning, and even ultrasonic audio analysis. Their use has avoided many rail accidents over the 70 years they have been used.


3.4. Infrastructure Signalling

Railway signalling is a system used to control railway traffic safely to prevent trains from colliding. Being guided by fixed rails which generate low friction, trains are uniquely susceptible to collision since they frequently operate at speeds that do not enable them to stop quickly or within the drivers sighting distance; road vehicles, which encounter a higher level of friction between their rubber tyres and the road surface, have much shorter braking distances. Most forms of train control involve movement authority being passed from those responsible for each section of a rail network to the train crew. Not all methods require the use of signals, and some systems are specific to single track railways.

The signalling process is traditionally carried out in a signal box, a small building that houses the lever frame required for the signalman to operate switches and signal equipment. These are placed at various intervals along the route of a railway, controlling specified sections of track. More recent technological developments have made such operational doctrine superfluous, with the centralization of signalling operations to regional control rooms. This has been facilitated by the increased use of computers, allowing vast sections of track to be monitored from a single location. The common method of block signalling divides the track into zones guarded by combinations of block signals, operating rules, and automatic-control devices so that only one train may be in a block at any time.


3.5. Infrastructure Electrification

The electrification system provides electrical energy to the trains, so they can operate without a prime mover on board. This allows lower operating costs, but requires large capital investments along the lines. Mainline and tram systems normally have overhead wires, which hang from poles along the line. Grade-separated rapid transit sometimes use a ground third rail.

Power may be fed as direct DC or alternating current AC. The most common DC voltages are 600 and 750 V for tram and rapid transit systems, and 1.500 and 3.000 V for mainlines. The two dominant AC systems are 15 kV and 25 kV.


3.6. Infrastructure Stations

A railway station serves as an area where passengers can board and alight from trains. A goods station is a yard which is exclusively used for loading and unloading cargo. Large passenger stations have at least one building providing conveniences for passengers, such as purchasing tickets and food. Smaller stations typically only consist of a platform. Early stations were sometimes built with both passenger and goods facilities.

Platforms are used to allow easy access to the trains, and are connected to each other via underpasses, footbridges and level crossings. Some large stations are built as culs-de-sac, with trains only operating out from one direction. Smaller stations normally serve local residential areas, and may have connection to feeder bus services. Large stations, in particular central stations, serve as the main public transport hub for the city, and have transfer available between rail services, and to rapid transit, tram or bus services.


4.1. Operations Ownership

Since the 1980s, there has been an increasing trend to split up railway companies, with companies owning the rolling stock separated from those owning the infrastructure. This is particularly true in Europe, where this arrangement is required by the European Union. This has allowed open access by any train operator to any portion of the European railway network. In the UK, the railway track is state owned, with a public controlled body Network Rail running, maintaining and developing the track, while Train Operating Companies have run the trains since privatization in the 1990s.

In the U.S., virtually all rail networks and infrastructure outside the Northeast Corridor are privately owned by freight lines. Passenger lines, primarily Amtrak, operate as tenants on the freight lines. Consequently, operations must be closely synchronized and coordinated between freight and passenger railroads, with passenger trains often being dispatched by the host freight railroad. Due to this shared system, both are regulated by the Federal Railroad Administration FRA and may follow the AREMA recommended practices for track work and AAR standards for vehicles.


4.2. Operations Financing

The main source of income for railway companies is from ticket revenue for passenger transport and shipment fees for cargo. Discounts and monthly passes are sometimes available for frequent travellers e.g. season ticket and rail pass. Freight revenue may be sold per container slot for a whole train. Sometimes, the shipper owns the cars and only rents the haulage. For passenger transport, advertisement income can be significant.

Governments may choose to give subsidies to rail operation, since rail transport has fewer externalities than other dominant modes of transport. If the railway company is state-owned, the state may simply provide direct subsidies in exchange for increased production. If operations have been privatized, several options are available. Some countries have a system where the infrastructure is owned by a government agency or company – with open access to the tracks for any company that meets safety requirements. In such cases, the state may choose to provide the tracks free of charge, for a fee that does not cover all costs. This is seen as analogous to the government providing free access to roads. For passenger operations, a direct subsidy may be paid to a public-owned operator, or public service obligation tender may be helt, and a time-limited contract awarded to the lowest bidder. Total EU rail subsidies amounted to €73 billion in 2005.

Amtrak, the US passenger rail service, and Canadas Via Rail are private railroad companies chartered by their respective national governments. As private passenger services declined because of competition from automobiles and airlines, they became shareholders of Amtrak either with a cash entrance fee or relinquishing their locomotives and rolling stock. The government subsidizes Amtrak by supplying start-up capital and making up for losses at the end of the fiscal year.


4.3. Operations Safety

Trains can travel at very high speed, but they are heavy, are unable to deviate from the track and require a great distance to stop. Possible accidents include derailment jumping the track, a collision with another train or collision with automobiles, other vehicles or pedestrians at level crossings. The last accounts for the majority of rail accidents and casualties. The most important safety measures to prevent accidents are strict operating rules, e.g. railway signalling and gates or grade separation at crossings. Train whistles, bells or horns warn of the presence of a train, while trackside signals maintain the distances between trains.

An important element in the safety of many high-speed inter-city networks such as Japans Shinkansen is the fact that trains only run on dedicated railway lines, without level crossings. This effectively eliminates the potential for collision with automobiles, other vehicles or pedestrians, vastly reduces the likelihood of collision with other trains and helps ensure services remain timely.


4.4. Operations Maintenance

As in any infrastructure asset, railways must keep up with periodic inspection and maintenance in order to minimize effect of infrastructure failures that can disrupt freight revenue operations and passenger services. Because passengers are considered the most crucial cargo and usually operate at higher speeds, steeper grades, and higher capacity/frequency, their lines are especially important. Inspection practices include track geometry cars or walking inspection. Curve maintenance especially for transit services includes gauging, fastener tightening, and rail replacement.

Rail corrugation is a common issue with transit systems due to the high number of light-axle, wheel passages which result in grinding of the wheel/rail interface. Since maintenance may overlap with operations, maintenance windows must be closely followed. In addition, passenger safety during maintenance work must be regarded at all times. At times, maintenance access problems can emerge due to tunnels, elevated structures, and congested cityscapes. Here, specialized equipment or smaller versions of conventional maintenance gear are used.

Unlike highways or road networks where capacity is disaggregated into unlinked trips over individual route segments, railway capacity is fundamentally considered a network system. As a result, many components are causes and effects of system disruptions. Maintenance must acknowledge the vast array of a routes performance, lines capacity, trains throughput max speeds, acceleration/deceleration rates, and service features with shared passenger-freight tracks.


5. Social, economical, and energetic aspects


A 2018 study found that the opening of the Beijing Metro caused a reduction in "most of the air pollutants concentrations but had little effect on ozone pollution."


In 2014, total rail spending by China was $130 billion and is likely to remain at a similar rate for the rest of the countrys next Five Year Period 2016–2020.


In 2016 Russian Railways received 94.9 billion roubles around US$1.4 billion from the government.

United States

In 2015, funding from the US Federal Government for Amtrak was around US$1.4 billion. By 2018, appropriated funding had increased to approximately US$1.9 billion.


5.1. Social, economical, and energetic aspects Energy

Rail transport is an energy-efficient but capital-intensive means of mechanized land transport. The tracks provide smooth and hard surfaces on which the wheels of the train can roll with a relatively low level of friction being generated. Moving a vehicle on and/or through a medium requires that it overcomes resistance to its motion caused by friction. A land vehicles total resistance in pounds or Newtons is a quadratic function of the vehicles speed:

R = a + b v + c v 2 {\displaystyle \\qquad R=a+bv+cv^{2}}


R denotes total resistance a denotes initial constant resistance b denotes velocity-related constant c denotes constant that is function of shape, frontal area, and sides of vehicle v denotes velocity v 2 denotes velocity, squared

Essentially, resistance differs between vehicles contact point and surface of roadway. Metal wheels on metal rails have a significant advantage of overcoming resistance compared to rubber-tyred wheels on any road surface railway – 0.001g at 10 miles per hour 16 km/h and 0.024g at 60 miles per hour 97 km/h; truck – 0.009g at 10 miles per hour 16 km/h and 0.090 at 60 miles per hour 97 km/h). In terms of cargo capacity combining speed and size being moved in a day:

  • long-haul train – can carry 500.000 tmi/day 730.000 tkm/day Most trains take 250–400 trucks off the road, thus making the road more safe.
  • horse cart on good pavement – can carry 10 tmi/day 14 tkm/day
  • human – can carry 100 pounds 45 kg for 20 miles 32 km per day, or 1 tmi/day 1.5 tkm/day
  • horse and wheelbarrow – can carry 4 tmi/day 5.8 tkm/day
  • fully utility truck – can carry 20.000 tmi/day 29.000 tkm/day

In terms of the horsepower to weight ratio, a slow-moving barge requires 0.2 horsepower per short ton 0.16 kW/t, a railway and pipeline requires 2.5 horsepower per short ton 2.1 kW/t, and truck requires 10 horsepower per short ton 8.2 kW/t. However, at higher speeds, a railway overcomes the barge and proves most economical.

As an example, a typical modern wagon can hold up to 113 tonnes 125 short tons of freight on two four-wheel bogies. The track distributes the weight of the train evenly, allowing significantly greater loads per axle and wheel than in road transport, leading to less wear and tear on the permanent way. This can save energy compared with other forms of transport, such as road transport, which depends on the friction between rubber tyres and the road. Trains have a small frontal area in relation to the load they are carrying, which reduces air resistance and thus energy usage.

In addition, the presence of track guiding the wheels allows for very long trains to be pulled by one or a few engines and driven by a single operator, even around curves, which allows for economies of scale in both manpower and energy use; by contrast, in road transport, more than two articulations causes fishtailing and makes the vehicle unsafe.


5.2. Social, economical, and energetic aspects Energy efficiency

Considering only the energy spent to move the means of transport, and using the example of the urban area of Lisbon, electric trains seem to be on average 20 times more efficient than automobiles for transportation of passengers, if we consider energy spent per passenger-distance with similar occupation ratios. Considering an automobile with a consumption of around 6 l/100 km 47 mpg ‑imp ; 39 mpg ‑US of fuel, the average car in Europe has an occupancy of around 1.2 passengers per automobile occupation ratio around 24% and that one litre of fuel amounts to about 8.8 kWh 32 MJ, equating to an average of 441 Wh 1.590 kJ per passenger-km. This compares to a modern train with an average occupancy of 20% and a consumption of about 8.5 kW⋅h/km 31 MJ/km; 13.7 kW⋅h/mi, equating to 21.5 Wh 77 kJ per passenger-km, 20 times less than the automobile.


5.3. Social, economical, and energetic aspects Usage

Due to these benefits, rail transport is a major form of passenger and freight transport in many countries. It is ubiquitous in Europe, with an integrated network covering virtually the whole continent. In India, China, South Korea and Japan, many millions use trains as regular transport. In North America, freight rail transport is widespread and heavily used, but intercity passenger rail transport is relatively scarce outside the Northeast Corridor, due to increased preference of other modes, particularly automobiles and airplanes. South Africa, northern Africa and Argentina have extensive rail networks, but some railways elsewhere in Africa and South America are isolated lines. Australia has a generally sparse network befitting its population density but has some areas with significant networks, especially in the southeast. In addition to the previously existing east–west transcontinental line in Australia, a line from north to south has been constructed. The highest railway in the world is the line to Lhasa, in Tibet, partly running over permafrost territory. Western Europe has the highest railway density in the world and many individual trains there operate through several countries despite technical and organizational differences in each national network.


5.4. Social, economical, and energetic aspects Modernization

Railways are central to the formation of modernity and ideas of progress. The process of modernization in the 19th century involved a transition from a spatially oriented world to a time oriented world. Exact time was essential, and everyone had to know what the time was, resulting in clocks towers for railway stations, clocks in public places, pocket watches for railway workers and for travelers. Trains left on time they never left early. By contrast, in the premodern era, passenger ships left when the captain had enough passengers. In the premodern era, local time was set at noon, when the sun was at its highest. Every place east to west had a different time and that changed with the introduction of standard time zones. Printed time tables were a convenience for the travelers, but more elaborate time tables, called train orders, were even more essential for the train crews, the maintenance workers, the station personnel, and for the repair and maintenance crews, who knew when to expect a train would come along. Most trackage was single track, with sidings and signals to allow lower priority trains to be sidetracked. Schedules told everyone what to do, where to be, and exactly when. If bad weather disrupted the system, telegraphers relayed immediate corrections and updates throughout the system. Just as railways as business organizations created the standards and models for modern big business, so too the railway timetable was adapted to myriad uses, such as schedules for buses ferries, and airplanes, for radio and television programs, for school schedules, for factory time clocks. The modern world was ruled by the clock and the timetable.


5.5. Social, economical, and energetic aspects Shipping freight and passengers

First they provided a highly efficient network for shipping freight and passengers across a large national market. The result was a transforming impact on most sectors of the economy including manufacturing, retail and wholesale, agriculture, and finance. The United States now had an integrated national market practically the size of Europe, with no internal barriers or tariffs, all supported by a common language, and financial system and a common legal system.


5.6. Social, economical, and energetic aspects Basis of the private financial system

Railroads financing provided the basis for a dramatic expansion of the private non-governmental financial system. Construction of railroads was far more expensive than factories. In 1860, the combined total of railroad stocks and bonds was $1.8 billion; 1897 it reached $10.6 billion compared to a total national debt of $1.2 billion. Funding came from financiers throughout the Northeast, and from Europe, especially Britain. About 10 percent of the funding came from the government, especially in the form of land grants that could be realized when a certain amount of trackage was opened. The emerging American financial system was based on railroad bonds. New York by 1860 was the dominant financial market. The British invested heavily in railroads around the world, but nowhere more so than the United States; The total came to about $3 billion by 1914. In 1914–1917, they liquidated their American assets to pay for war supplies.


5.7. Social, economical, and energetic aspects Inventing modern management

Railroad management designed complex systems that could handle far more complicated simultaneous relationships than could be dreamed of by the local factory owner who could patrol every part of his own factory in a matter of hours. Civil engineers became the senior management of railroads. The leading American innovators were the Western Railroad of Massachusetts and the Baltimore and Ohio Railroad in the 1840s, the Erie in the 1850s and the Pennsylvania in the 1860s.


5.8. Social, economical, and energetic aspects Career paths

The railroads invented the career path in the private sector for both blue-collar workers and white-collar workers. Railroading became a lifetime career for young men; women were almost never hired. A typical career path would see a young man hired at age 18 as a shop laborer, be promoted to skilled mechanic at age 24, brakemen at 25, freight conductor at 27, and passenger conductor at age 57. White-collar careers paths likewise were delineated. Educated young men started in clerical or statistical work and moved up to station agents or bureaucrats at the divisional or central headquarters. At each level they had more and more knowledge, experience, and human capital. They were very hard to replace, and were virtually guaranteed permanent jobs and provided with insurance and medical care. Hiring, firing, and wage rates were set not by foremen, but by central administrators, in order to minimize favoritism and personality conflicts. Everything was done by the book, whereby an increasingly complex set of rules dictated to everyone exactly what should be done in every circumstance, and exactly what their rank and pay would be. By the 1880s the career railroaders were retiring, and pension systems were invented for them.


5.9. Social, economical, and energetic aspects Transportation

Railways contribute to social vibrancy and economic competitiveness by transporting multitudes of customers and workers to city centres and inner suburbs. Hong Kong has recognized rail as "the backbone of the public transit system" and as such developed their franchised bus system and road infrastructure in comprehensive alignment with their rail services. Chinas large cities such as Beijing, Shanghai, and Guangzhou recognize rail transit lines as the framework and bus lines as the main body to their metropolitan transportation systems. The Japanese Shinkansen was built to meet the growing traffic demand in the "heart of Japans industry and economy" situated on the Tokyo-Kobe line.


5.10. Social, economical, and energetic aspects Wartime roles and air targets

In the 1863-70 decade the heavy use of railways in the American Civil War, and in Germanys wars against Austria and France, provided a speed of movement unheard-of in the days of horses. During much of the 20th century, rail was a key element of war plans for rapid military mobilization, allowing for the quick and efficient transport of large numbers of reservists to their mustering-points, and infantry soldiers to the front lines. The Western Front in France during World War I required many trainloads of munitions a day. Rail yards and bridges in Germany and occupied France were major targets of Allied air power in World War II. However, by the 21st century, rail transport – limited to locations on the same continent, and vulnerable to air attack – had largely been displaced by the adoption of aerial transport.


5.11. Social, economical, and energetic aspects Negative impacts

Railways channel growth towards dense city agglomerations and along their arteries, as opposed to highway expansion, indicative of the U.S. transportation policy, which encourages development of suburbs at the periphery, contributing to increased vehicle miles travelled, carbon emissions, development of greenfield spaces, and depletion of natural reserves. These arrangements revalue city spaces, local taxes, housing values, and promotion of mixed use development.

The construction of the first railway of the Austro-Hungarian empire, from Vienna to Prague, came in 1837–1842 to promises of new prosperity. Construction proved more costly than anticipated, and it brought in less revenue because local industry did not have a national market. In town after town the arrival of railway angered the locals because of the noise, smell, and pollution caused by the trains and the damage to homes and the surrounding land caused by the engines soot and fiery embers. Almost all travel was local; ordinary people seldom had need of passenger trains.


5.12. Social, economical, and energetic aspects Pollution

A 2018 study found that the opening of the Beijing Metro caused a reduction in "most of the air pollutants concentrations but had little effect on ozone pollution."


5.13. Social, economical, and energetic aspects Modern rail as economic development indicator

European development economists have argued that the existence of modern rail infrastructure is a significant indicator of a countrys economic advancement: this perspective is illustrated notably through the Basic Rail Transportation Infrastructure Index known as BRTI Index.


5.14. Social, economical, and energetic aspects China

In 2014, total rail spending by China was $130 billion and is likely to remain at a similar rate for the rest of the countrys next Five Year Period 2016–2020.


5.15. Social, economical, and energetic aspects India

The Indian railways are subsidized by around ₹ 400 billion US$5.6 billion, of which around 60% goes to commuter rail and short-haul trips. It is the fourth largest railway network in the world comprising 119.630 kilometres 74.330 miles of total track and 92.081 km 57.216 mi of running track over a route of 66.687 km 41.437 mi with 7.216 stations at the end of 2015–16.


5.16. Social, economical, and energetic aspects Europe

According to the 2017 European Railway Performance Index for intensity of use, quality of service and safety performance, the top tier European national rail systems consists of Switzerland, Denmark, Finland, ­Germany, Austria, Sweden, and France. Performance levels reveal a positive correlation between public cost and a given railway systems performance, and also reveal differences in the value that countries receive in return for their public cost. Denmark, Finland, France, Germany, the Netherlands, Sweden, and Switzerland capture relatively high value for their money, while Luxembourg, Belgium, Latvia, Slovakia, Portugal, Romania, and Bulgaria underperform relative to the average ratio of performance to cost among European countries.


5.17. Social, economical, and energetic aspects Russia

In 2016 Russian Railways received 94.9 billion roubles around US$1.4 billion from the government.


5.18. Social, economical, and energetic aspects United States

In 2015, funding from the US Federal Government for Amtrak was around US$1.4 billion. By 2018, appropriated funding had increased to approximately US$1.9 billion.

  •  Burundi: see Rail transport in Burundi Comoros: see Rail transport in Comoros Djibouti: see Rail transport in Djibouti Eritrea: see Rail transport in Eritrea
  • developed. Rail transport in Scotland discusses rail transport in Scotland. Rail transport in England discusses rail transport in England. Rail transport in Wales
  • Rail transport means of conveyance of passengers and goods by way of wheeled vehicles running on rail tracks consisting of steel rails installed on
  • December 1947. The growth in road transport during the 1920s and 1930s greatly reduced revenue for the rail companies. Rail companies accused the government
  • Rail transport in South Africa is an important element of the country s transport infrastructure. All major cities are connected by rail and South Africa s
  • Rail transport in Israel includes heavy rail inter - city, commuter, and freight rail as well as light rail Excluding light rail the network consists
  • This article lists events relating to rail transport that occurred during the 1790s. The world s first railway viaduct, which became known as the Covered
  • Rail transport in France is marked by a clear predominance of passenger traffic, driven in particular by high - speed rail The SNCF, the national state - owned
  • and a number of private companies. Today passenger rail services are controlled by the Public Transport Authority a department of the Government of Western
  • This article lists events relating to rail transport that occurred during the 1780s. January 26 John Urpeth Rastrick, English steam locomotive builder
  • Passenger rail transport is one of the principal means of transport in the People s Republic of China, with rail passenger traffic exceeding 1.86 billion
  • This article is part of the history of rail transport by country series. The history of rail transport in China began in the late nineteenth century during
  • Rail transport in Austria is mainly owned by the national rail company OBB. The railway network consists of 6, 123 km, its gauge is 1, 435 mm 4 ft 8 1 2 in
  • Rail transport in Ukraine is a mode of transport by railway in Ukraine. It consists of several components. Network of railways and infrastructure e.g
  • This article is part of the history of rail transport by country series The history of rail transport in the Comoros began in about 1907. The only railway
  • Rail transport in Malaysia comprises heavy rail including commuter rail light rapid transit LRT mass rapid transit MRT monorail, airport rail
  • This article is part of the History of rail transport series The history of rail transport in France dates from the first French railway in 1823 to present - day
  • Rail transport in Spain operates on four rail gauges and services are operated by a variety of private and public operators. The total route length in
  • Rail transport in Ireland InterCity, commuter and freight is provided by Iarnrod Eireann in the Republic of Ireland and by Northern Ireland Railways
  • Rail transport in Victoria, Australia, is provided by a number of railway operators who operate over the government - owned railway lines. The network consists
  • Transport for Wales Rail Services Welsh: Gwasanaethau Rheilffyrdd Trafnidiaeth Cymru is a Welsh train operating company operated by Keolis Amey Wales
  • This article is part of the history of rail transport by country series The history of rail transport in Equatorial Guinea began in 1913, when a standard - gauge
  • Years in rail transport include:
  • Rail freight transport is the use of railroads and trains to transport cargo as opposed to human passengers. A freight train, cargo train, or goods train
  • Rail transport in Tasmania consists of a network of narrow gauge track of 1, 067 mm 3 ft 6 in reaching virtually all cities and major towns in the island
  • This article lists events relating to rail transport that occurred during the 1760s. December 28 John Molson, established the Champlain and Saint Lawrence
  • The NSW Rail Museum is the main railway museum in New South Wales, Australia. A division of Transport Heritage NSW, it was previously known as the New
  • Rail transport is an important mode of long - distance transportation in the People s Republic of China. As of 2015, the country has 121, 000 km 75, 186 mi
  • The history of rail transport in Ireland began only a decade later than that of Great Britain. By its peak in 1920, Ireland had 3, 500 route miles 4, 200 km
  • Railways It operates a standard - gauge railway gauge 1, 435 mm 4 ft 8 1 2 in rail system in Albania. All trains are hauled by Czech - built ČKD diesel - electric

Encyclopedic dictionary


Users also searched:

rail transport in india, railway transport services, track rail transport,

Rail transport EUR Lex. UNECE Areas Work Meetings Documents Working Party on SC2. Rail Transport About us Terms of. .. Rail transport What is? Definition of, Rail Transport. Jan 6, 2020 petrochemical and refining unit of French energy major Total is latest big freight shipper to accuse the nations four biggest railroads. .. Rail transport Rail transport World The Guardian. . January and sail: how book the perfect holiday – without any flying Paris transport set return to normal as rail union suspends strike.. .. Inter–Rail Group, Inc Built on 40 Years of Safety and Innovation. Journal Rail Transport Planning & Management aims to stimulate quality of service for railway passengers and freight customers by improving the. .. International Journal of Rail Transportation. The Working Party on Rail Transport SC.2 is an intergovernmental body which provides a pan European forum for exchange of technical, legal and policy. .. Rail transport Sustainable Rail Transport Services You Can Count On Hallcon. Definition: Rail also known as train. a means transport, vehicles which run on tracks rails or railroads. It is one of the most. .. Rail transport Journal of Rail Transport Planning & Management Elsevier. Mar 7, 2019 Around world, massive network Railways is pivotal to the movement of people and goods in large scale. For decades Hitachi has. .. Rail transport Modernising the Rail Transport Hitachi Railway Systems Business. not to be missed. List of events organized endorsed by or with ETSI participation.. .. Rail transport Comprehensive analysis of the existing cross border rail transport. The Rail Transport Committee CIT is an association of some 216 railway undertakings and shipping companies which provide international. .. Rail transport Developing the Future Radio for Rail Transport ETSI. load file: For over four decades, Inter–Rail Group has provided high quality auto. Rail transport International Air Rail Transport Summit in Bangkok, Thailand. International Air Rail Transport Summit on Wednesday 20th November 2019 @ Centara Grand at CentralWorld Bangkok, Thailand.. .. Rail transport Rail Transport Continental Industry. Yusen Logistics offers both unmatched dependability flexibility with our customized over road trucking solutions. We have access to the equipment and. .. Rail transport - The CIT. Jan 28, 2020 Transport Department wants to expand the use of Thai made rail fasteners and sleepers in double track railway construction,. .. Rail transport Sun on the rails Solar powered trains could make rail transport. Nov 21, 2019 COMMUTERS MAY not have paid them much attention, but small array of solar panels next to the railway line at Aldershot, a town 50km 30. .. Rail transport Road & Rail Transport Yusen Logistics. Development expertise from Continental for a modern rail industry.. .. Working Party on Rail Transport. Hallcon is focused getting your sustainable rail transport needs met locally from train, or where they need be on time, and ready to work.. .. Rail transport Rail Transport UNECE. Mar 30, 2018 More crossborder railway passenger transport across additional cross border connections could enhance mobility and economic development. .. Rail transport Rail Transport Department switching track to Thai made sleepers. EU wide rail safety State aid companies European Union Agency for Railways a safe and interoperable railway area Ensuring the. .. Rail transport Shippers say they overpaid for rail transport, alleging price fixing. By closing this message, you are consenting to our use cookies. Taylor & Francis Online Top. International Journal of Rail Transportation. Submit an article.

Special provisions for international rail transport to and from China.

Passenger. Rail Transport. A Survey prepared by. Paul Seabright with contributions by. Claude Crampes. Etienne de Villemeur. Guido Friebel. Chris Glasson. Rail transport between China and Europe speed and cost. 26 Sep 2019 A train is a set of connected vehicles that travel along a railroad track to transport passengers and goods to their destinations. The track is. Chapter 11 RAIL TRANSPORT IN CHILE. Our premier railway freight company offers rail transport and rail services in North America. Train Schedule Optimization in Public Rail Transport CiteSeerX. 1 May 2019 Passenger rail services between the capital cities of Iran and Turkey are set to resume in July, the CEO of the Islamic Republic of Iran Railways.

Csx Rail Transport Montgomery County, Ohio.

Rail transport first arose in the Insular Caribbean region in the 17 th century, largely as a result of the colonial sugar trade. Given the high sugar production rates. Rail transport wand. Read the latest news, articles and white papers from International Rail Transport Committee CIT. Railway Freight Nippon Express. Appl Biochem Biotechnol. 2006 Spring 129 132:88 103. Rail vs truck transport of biomass. Mahmudi H 1, Flynn PC. Author information: 1 Department of. Rail industry Clean public transport experiences a revival ABB Group. Transport by rail is a growing mode of transportation for moving energy products throughout the West Coast. Consequently, the shift from vessel to rail is.

International Air Rail Transport Summit in Bangkok, Thailand.

X Extensive reform was completed in the rail sector in Chile and different models Chiles first railroad track was laid in 1851 to transport silver from the mines in. SCI study forecasts upturn in global rail market International. This study was prepared by Transport Division ESCAP. Efficient international railway transport depends in part on high level of interoperability among the. Rail Travel Is Cleaner Than Driving or Flying, but Will Americans. China moving forward in heavy haul rail transport. Published on 05 09 2017 at. China is working to improve its heavy haul technology for 30.000 tonne. Rail transport Rolling CMS Demo AMRKS. Rail Transport Regulation. ∗. Javier Campos. University of Las Palmas. Spain. Pedro Cantos. University of Valencia. Spain. ∗. This paper has been prepared. Rail transport system GMV. This study seeks to quantify the magnitude of returns to scale and returns to traffic density for urban rail operations, and to identify factors that give rise to.

Uber joins forces with public rail transport google - wiki.info.

This article lists events related to rail transport that are currently scheduled to occur in 2019. Please be aware that the actual dates on which these events occur. Rail transport or transport by train TransHeroes®. 3 Sep 2019 Here is a look at the significant events of the past two decades and how they have impacted rail transport in Europe on both passenger and. Swedish rail transport and the market: twisted signals – Jon Worth. China The international transportation of goods by rail is of increasing importance. Read more about special provisions for international rail transport.

International Journal of Rail Transportation Taylor & Francis Online.

30 Aug 2018 Bruce Thompson is the Long Distance Road and Rail Transport Theme Lead for the five year High Volume Transport HVT applied research. Rail Transport in Iran Financial Tribune. Rail transport or train transport is a means of transferring passengers and goods on wheeled vehicles running on rails, which are located on tracks. In contrast to. Solutions for Rail Transport Trapeze Group. 15 Feb 2018 Blog by Scott Hemphill, Global Sustainability Developer at IKEA Transport. The Inter IKEA Group is committed to the Paris Agreement on. The Reform of Rail Transport in Great Britain jstor. Rail transport. We consider schedules which are repeated after some xed time period. Periodicity is a well accepted, convenient attribute of all major railroad. Rail Transportation and Pipelines The Geography of Transport. Rail transport in Europe are borne directly by passenger and freight customers. Observing these trends, a particular concern of the European Commission was.

Rail Freight Pantos Logistics.

14 Feb 2019 Climate change means that China needs to reduce carbon dioxide emissions from its transport sector. The study reported in the paper. What does rail transport mean? Dgoogle - wiki.info. By closing this message, you are consenting to our use of cookies. Taylor & Francis Online Top. International Journal of Rail Transportation. Submit an article. Journal of Rail Transport Planning and Management SCImago. History of Rail Transport Steam Locomotives Development of the British Railway Network Development of Railways in other Countries Electric Railways.

Rail Transport Rail Transport SDDC.

Rail transport is a means of conveyance of passengers and goods, by way of wheeled vehicles running on rail tracks. It is also commonly referred to as train. Rail transport International Think Tank for LLDCs. Rail Transport. Through out the extend rail system railways and metro backup BATTERY energy is required as a form of direct DC energy or AC energy from. Rail transport pedia. The Vogelsang system for recording and evaluation of data from rail vehicles in train UICScan by Vogelsang – the system for identification in rail transport. TRANSPORT & MACHINERY RAIL TRANSPORT images Visual. Rail transport is a means of conveyance of passengers and goods by way of wheeled vehicles running on rail tracks. In contrast to road transport, where. Inter Rail Transport Jobs, Employment google - wiki.info. 29 Nov 2015 Contact: International Union of Railways UIC, Nick Craven, craven@google - wiki.info The transport sector is responsible for about one quarter of global. Rail transport document LC CIM Consignment Note. With new technology, passenger rail transportation offers comfort, speed, convenience and a rewarding travel experience. It is no wonder why more people.

Timeline: two decades of rail transport in Europe and its dream for a.

This page contains NIPPON EXPRESS Railway Freight. Britain to hold root and branch review of rail transport Reuters. Zero Emission Rail Transport Explore topics on hydrogen power as a clean fuel solution, and PEM fuel cell Technology Solutions for motive application. IKEAs Use of Rail Transport to Reduce GHG Emissions Low. The whole range of light rail, metro, heavy and high speed railway systems. Rail Transport Planning & Management integrates the expertise from different. Regulation EU 2018 643 of the European Parliament EUR Lex. Continual increase of transport mobility has caused a lot of environmental and community problems. Although the railway transport is considered to be the most.

Why rail transport could be more important to your hotels future than.

Schalke Locomotives provide maximum versatility and can be used to perform a variety of tasks in urban and regional passenger rail transport systems. They are. Rail transport Economist World News, Politics, Economics. At SRT Transportation Solutions, we specialize in transporting very large cargo by rail. And as monumental as that task sounds, here at SRT we do it everyday. Rail transport revenue worldwide 2011 2023 Statista. Keywords: Transport system CO2 emissions Road infrastructure Rail system. INTRODUCTION. Transport is the second biggest greenhouse gas GHG.

Caribbean Rail Transport Not Lost and Not Forgotten ACS AEC.

We now offer rail transport of cargo between China and Europe. Using rail as a means of transportation is both speedy and cost effective. Tschudi Logistics has. 2019 in rail transport pedia. Planning railway service schedules and optimizing necessary resources drivers, locomotives and wagons, doing so swiftly, efficiently and at the lowest. Heterogeneity in demand and optimal price conditioning for local rail. 12 Apr 2019 When one thinks of railroad transportation they tend to think of locomotives hauling freight cars. Sure that is one way a railroad is utilize but. Rail Transport Wolfram Alpha Examples. This statistic shows the average annual revenue in rail transport worldwide from 2011 to 2023. History of Railroad Development of Rail Transport Train History. It is increasingly adopted in social sciences but according to our best knowledge used for the first time to aggregate and contrast findings on rail transport. String Rail a low cost, low impact, high speed transport alternative. 1 Oct 2018 Abstract. Development of railway transport systems is perceived as one of the most effective ways of shaping sustainable urban transportation.

Why The China Europe Silk Road Rail Network Is Growing Fast.

28 Jan 2016 With key improvements in route options, performance, and customs protocols, trans continental rail transport is set for a renaissance. The map. Enhancing interoperability for facilitation of international railway. 17 Oct 2012 Intermodal solutions gather steam as shippers track the financial and efficiency benefits of combining truck and rail transport. The U.S. railroad. IDEI Report 1 Rail Transport Paul Seabright. 14 Sep 2018 The Chinese rail market is losing momentum and will stagnate up to 2022. However, great potential lies in rail freight transport between Asia. A Holistic Approach for Estimating Carbon Emissions of Road and. First Railway line in Kosovo is constructed in 1874 in route Hani i Elezit Fushe Kosovo Railways offers you possibility in a faster way to find your transport. Rail PPP Knowledge Lab. High speed train. High speed passenger train between 135 and 190 mph powered by electricity, with a power car at each end and a limited number of cars. Economies of scale and density in urban rail transport. CSX is one of the nations leading transportation companies, providing traditional rail service as well as the transport of intermodal containers and trailers across.

9 major factors shaping the future of the rail industry. SmartRail World.

In Europe, 80 percent of rail transport is powered by electricity. measured in passenger km and metric ton km, which increasingly comes from renewable. A dynamic data driven approach for rail transport system simulation. ​ Rail transport is essential for the shipment and deployment of oversize and overweight equipment. It is also essential for the land deployment of all equipment. Urban Transformation in the Context of Rail Transport Development. Railways is the most important form of transport system. In 1953, the first railway line was laid between Mumbai and Thane in 1853. It was a distance of 22 miles. History of rail transport. Regulation EU 2018 643 of the European Parliament and of the Council of 18 April 2018 on rail transport statistics. Regulation EU 2018 643 of the European. Low Carbon Sustainable Rail Transport Challenge UNFCCC. 30 Nov 2017 The project called Construction of Rail Transport System in Guatemala will give a quality leap to the current public transportation system.

Turkish railways online booking.

Eurasia Rail. The China Railway Construction Corporation and the China National Machinery Import and. Turkish railways map. Public Transportation Bus,Metro,Tram,Ferry Fares in Istanbul, Turkey. 30 Oct 2017 Once the railroad is operational, Turkey, Georgia, and Azerbaijan will extent to which they could have utilized these new transport options. Tcd demiryollari. China high speed rail in the US, Turkey, Moscow & Indonesia. 16 Nov 2010 Istanbul Otogar Ikitelli Rail Transportation System Turkey. Sector: Infrastructure. Project Enterprises: West LB Istanbul Branch, Istanbul.

Characteristics of rail transport.

Rail Transportation and Pipelines The Geography of Transport. The Illinois Railway Museum is the largest railway museum in the United States. Located 35 miles northwest of OHare Airport, it offers train rides on steam,. History of trains timeline. History of Railroads in New York State nysdot. Rail transportation refers to the movement of vehicles on guideways. They are heterogeneous across jurisdictions since because of historical and political. First train in asia. History of rail transport in Australia Facts for Kids Kiddle encyclopedia. ATMOSPHERIC RAILWAY An Attempt to Drive Trains by Air Pressure. AUSTRIAS RAIL TRANSPORT Progressive Development in a Mountainous Country.

Light rail transit.

Auckland Rapid Transit System Railway Technology. Light Rail Icon PNG Rail Transport Rapid Transit Clipart png is about is about Light Rail Icon, Rail Transport, Rapid Transit, Train, Dubai Metro. Light Rail Icon. Mass rapid transit system in india. Light Rail Icon PNG Rail Transport Rapid Transit Clipart download. 12 Jun 2018 Public transport in Singapore is among the worlds most cost efficient systems. The public transit systems range from rail, bus, and taxis, among. Bus rapid transit. Getting Around Chicago Trains, Parking, Taxis & Bike Sharing. 19 Jul 2018 Public transport as things stand in Edinburgh is a mixed bag. In Glasgow, albeit a bigger city, there are 61 National Rail stations and 15.

Citylink tram train.

San Francisco Municipal Transportation Agency SFMTA, transit. Train Rail transport Tram High speed rail Clip art train transparent png is about Train, Rail Transport, Tram, Highspeed Rail, Transport, Computer Icons, Public. Light rail line. Wireless Mobile Monitoring System for Tram Rail Transport in. 23 Oct 2019 How can we provide those communities with the same quality of public transport as light rail provides? Trackless trams may be an option that. How do trams work. Ukraine develops its first tram train service RailTech.com. Train, tram, rails transport isometric flat icon. 3d vector colorful illustration. Pictogram isolated on white background. Download a Free Preview or High Quality. Light rail. BUENOS AIRES Tramways & Light Rail SkyscraperCity. Our trains provide fun, quick and convenient Vegas transportation. you are using the fastest, cleanest, and most efficient transportation available. Train Hours.

Russian railways 1917.

Logistics of North West Russia and Rail Baltica CiteSeerX. Currently, there are two pairs of weekly international trains between China and Russia running on the famous Trans Siberian Railway The K3 K4 trains called. Russian railways history. Russian Railways LinkedIn. 5 Aug 2018 China to Europe via Russia rail transport has been in an uptrend since 2013, and global growth and consumer trends point to even strong. President of russian railways. China Europe Rail Freight Transport Market Mordor Intelligence. This statistic displays the annual transport volume of passenger trains in the Russian Federation from 2006 to 2017, in million passenger kilometer. Russian train engines. History of rail transport in Russia Visually. 6 Sep 2017 Russias grain storage, railway transport and export infrastructure is working at maximum capacity as the crop, which is widely expected to.

Rail gauge map australia.

Special provisions for international rail transport to and from China. Australian Rail Maps. 6516 likes 1606 talking about this. Helping travellers discover Australia by train and public transport. Publishing online. Transport in the 1800s australia. Rail transport in Western Australia Facts for Kids Kiddle encyclopedia. Rail transport in Australia is a crucial aspect of the Australian transport network. Rail in Australia is to a large extent state based. The Australian rail network. Rail freight australia. High speed trains to nowhere: Australias long running rail fail. Download. info@tma google - wiki.info. United Kingdom. ©2017 by TMA Global Consultancy. Black Facebook Icon Webmaster Login. United Arab Emirates. Australia. Australian rail companies. Case Study: Australian Rail Track Corporation PPIAF. 24 Mar 2014 A History of Rail Transport in Australia book. Read reviews from worlds largest community for readers. For primary school students.

This website uses cookies. Cookies remember you so we can give you a better online experience.
preloader close